Organic Chemistry Some Basic Principles and Tech

1. Assertion (A): Carboxylic acid is more acidic than carbolic acid

Reason (R): Conjugate base of carboxylic acid is more stable than conjugate base of carbolic acid.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **2. Assertion (A):** Carboxylic acid is more acidic than carbolic acid

Reason (R): Carboxylic acid have equivalent resonating structure.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 3. Assertion (A): A species having a carbon atom possessing sextext of electrons and a positive charge is called a carbocation

Reason (R): A species having a carbon carrying a negative charge on carbon atom is called carbanion.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

4. Assertion (A): (CH₃)₃ $\overset{\oplus}{C}$ is more stable than CH₃ $\overset{\dagger}{C}$ H₂ and $\overset{\dagger}{C}$ H₃ is the least stable cation.

Reason (R): Hyperconjugation interaction in $(CH_3)_3 \overset{\oplus}{C}$ is greater than in $CH_3 \overset{\dagger}{C}H_{2+}$ as the $(CH_3)_3 \overset{\dagger}{C}$ has nine C-H bonds. In CH_3 , vacant p orbital is perpendicular to the plane in which C-H bonds lie; hence cannot overlap with it.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **5. Assertion (A):** The compound cyclooctatetraene has the following structural formulas

It is cyclic and non-aromatic compound.

Reason (R): $(4n+2)\pi$ - electron rule does not hold good and ring is non-planar

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

6. Assertion (A): Energy of resonance hybrid is equal to the average of energies of all canonical forms.

Reason (R): Resonance hybrid cannot be presented by a single structure.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **7. Assertion (A):** Tertiary carbonium ions are generally formed more easily than primary carbonium ions.

Reason (R): Hyper conjugative as well as inductive effect due to additional alkyl groups stablise tertiary carbonium ion.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **8. Assertion (A):** Cyclohexanone exhibits keto-enol tautomerism

Reason (R): Keto form of cyclohexanone is more stable than its enol form.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

Assertion (A): Pyrrole is strong base than aniline

Reason (R): Pyrrole have delocalised lone pair.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

Reason (R): Tetracyanomethane has 8σ and 8π bonds.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **11. Assertion (A):** CHCl₃ is more acidic than CHF₃.

Reason (R): The conjugate base of $CHCI_3$ is more stable than CHF_3 .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

12. Assertion (A): The major product of addition of HCl upon the alkene (I) is II given below.

Reason (R): The reaction occurs by carbocationic inter mediate formation and the carbocation

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 13. Assertion (A): In naphthalene

the electrophilic attack on indicated position 1 is more hindered so less stable intermediate is formed hence it takes place at position 2.

Reason (R): The electrophile attacks on the position which gives less stable intermediate.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

14. Assertion (A): Pyrrole, is aromatic and undergoes electrophilic aromatic substitution extremely readily and predominant by at position adjacent to nitrogen.

Reason (R): Nitrogen in the ring bearing a lone pair in conjugation with π – electrons brings aromaticity to the pyrrole.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 15. Assertion (A): CI dissociates

easily whereas does not

dissociate

Reason (R): dissociates

produces a highly stable aromatic cycloheptatrienyl carbocation but

Cl produces very unstable

anti aromatic cyclopentadienyl cation on dissociation.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

	ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	3	1	1	1	3	1	1	4	1	1	1	4	2	1

